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Exact actuator disk solutions for non-uniform
heavy loading and slipstream contraction
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A semi-analytical method has been developed to solve for the inviscid incompressible
flow induced by a heavily loaded actuator disk with non-uniform loading. The solution
takes the contraction of the slipstream fully into account. The method is an extension
of the analytical theory of Conway (1995) for the linearized actuator disk and is
exact for an incompressible perfect fluid. The solutions for the velocities and stream
function are given as one-dimensional integrals of expressions containing complete
elliptic integrals. Any load distribution with bounded radial gradient can be treated.
Results are presented here for both contra-rotating and normal propellers. For the
special case of a contra-rotating propeller with a parabolic velocity profile in the
ultimate wake, the vorticity in the slipstream is shown to be the same as in the
analytically tractable spherical vortex of Hill (1894) and the related family of steady
vortices explored by Fraenkel (1970, 1972) and Norbury (1973).

1. Introduction
The actuator disk theory, which originated with the work of Rankine (1865)

and Froude (1889), has remained a useful mathematical model for various types of
practical propeller calculations in the aeronautical and marine industries, and has also
been applied extensively to wind turbines. The original Rankine and Froude theory
treated a uniformly loaded actuator disk and much of the subsequent theoretical
work on actuator disks has concentrated on the uniformly loaded disk, based on the
twin assumptions that it is the simplest case and that it provides a useful paradigm
and stepping stone for the generalized disk. It is of course well known that such
a uniform load distribution leads to a singular force on the propeller if slipstream
rotation is included without introducing a hub. A uniform load distribution on the
disk also implies the existence of a vortex sheet at the slipstream boundary which
terminates at the rim of the disk. Hough & Ordway (1965) have given the analytical
solutions for the velocity fields induced by the linearized disk, and their solution for
the radial velocity is singular at the disk rim.

Experience with other related problems involving a terminated vortex sheet (Kaden
1931; Pullin 1978) leads us to expect that such a sheet would roll up into a spiral of
infinite complexity in the neighbourhood of the rim, and a local analysis by Schmidt
& Sparenberg (1977) for zero free-stream conditions confirms that this is indeed
the case, with streamlines passing through the disk more than once near the rim.
The importance of this phenomenon for the uniformly loaded disk has also been
stressed by van Kuik (1991). While it is very likely that a numerical scheme could be
constructed to calculate the essential details of the roll-up, this phenomenon greatly
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undermines the simplicity of the uniformly loaded model and the reliability of the
elementary formulae derived from it, which are a commonplace of the textbooks.
Furthermore, most approaches for the nonlinear generalized actuator disk, such
as that of Greenberg & Powers (1970), Greenberg (1972) use the multiple vortex
tube approach, where the load distribution is represented as a piecewise-constant
distribution with a finite number of vortex sheets being shed from the disk at the
radial locations of the discontinuities in the load distribution. These vortex sheets, if
treated entirely consistently, would also roll up at their intersections with the disk.
Therefore the success of a multiple vortex tube model depends on the non-resolution
of this spiral roll-up near the disk, though this is a minor criticism as parallel
difficulties exist for all practical methods simulating the roll-up of a free vortex sheet.

In a recent paper, Conway (1995) derived analytical solutions for the entire flow
field induced by a linearized actuator disk with essentially arbitrary radial load
distribution. The method was based on the construction of the velocities and vector
potential of a ring vortex as integrals over the allowed values of the separation
constant of the eigensolutions of Laplace’s equation in cylindrical coordinates. With
this approach a generalized linearized actuator disk with a load distribution which
falls continuously to zero at the disk edge can be treated without introducing any free
vortex sheets, the slipstream being an axisymmetric volume distribution of vorticity.
The velocities calculated by this method were finite and continuous everywhere, even
for the case of an elliptic load distribution which has infinite radial slope at the
disk rim. The purpose of this article is to present the extension of this method to the
generalized nonlinear actuator disk, subject to the important restriction that the vortex
density in the slipstream remains bounded. Semi-analytical solutions are presented
for the nonlinear actuator disk and an iterative solution procedure applicable to
all load distributions with bounded radial gradient. Whereas closed form solutions
were obtained for the linearized disk in terms of complete elliptic integrals, the
nonlinear solutions are essentially one-dimensional integrals of similar elliptic integral
expressions, which are then evaluated numerically, using fortran routines published
by Press et al. (1992) and Forsythe, Malcolm & Moler (1977).

The restriction to bounded radial gradient of the load distribution, which was
not present in the earlier linearized theory (Conway 1995), is a consequence of the
numerical content of the present work. It remains to be seen if the theory presented
here can be extended in some manner to include load distributions such as the elliptic
distribution, which includes a square-root singularity in the radial gradient at the disk
rim.

In § 2 below the equations governing the nonlinear actuator disk are derived based
on a vortex wake model. In § 3 it is shown that the case of a contra-rotating propeller
with a parabolic radial velocity profile in the ultimate wake is by far the simplest
case, for which the azimuthal vorticity in the slipstream is known a priori and is in
fact the same as that within the spherical vortex of Hill (1894) and the related family
of steady vortices explored by Fraenkel (1970, 1972) and Norbury (1973). In § 4 a
slightly more complex approach for contra-rotating propellers is developed, and in
§ 5 the method is further extended to include single-rotating propellers with swirl. The
method allows propeller efficiency to be calculated for specified load distribution and
advance ratio and is suitable for coupling to blade element theory to give efficiency
as a function of advance ratio for specified propeller geometry. The solution can also
be embedded in a suitable panel method to calculate the effect of the propeller’s flow
field on its vehicle, with slipstream contraction taken fully into account. Table 1 lists
the special functions used.
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Symbol Special function

E(k) Complete elliptic integral of the second kind
I(λ,µ,ν)(R, r, z) Bessel–Laplace integral
Jv(x) Bessel function of the first kind
K(k) Complete elliptic integral of the first kind
Γ (x) Gamma function
δ(x) Dirac delta function

Table 1. Special functions used

2. General formulation of the problem
A propeller slipstream is a vortical flow region where a scalar potential cannot in

general be defined. However for incompressible flow with ∇ ·V = 0, the velocity field
V can be obtained from a vector (solenoidal) potential A through V = ∇ × A. For
axisymmetric flows it is convenient to introduce cylindrical polar coordinates (r, φ, z),
and here the z-axis is specified pointing downstream. Any arbitrary swirl component
Vφ does not contribute to ∇ ·V , and therefore a vector potential A can be introduced
for the velocity field consisting of the radial and axial components only. In this case
Aφ is the only non-zero component of A and the axial stream function Ψ is given by
rAφ. The vector potential can be constructed such that ∇ ·A = 0, hence A is given in
terms of the vorticity ω of the velocity field (Vr, 0, Vz) by

∇2A = −ω. (2.1)

Only the azimuthal component ωφ(r, z) of ω is non-zero and therefore Aφ(r, z), Vr(r, z)
and Vz(r, z) are fields induced by an axisymmetric ring vortex distribution.

The vector potential and longitudinal velocity fields induced by a ring vortex of
strength Γ and radius r′ placed with the plane of the ring normal to the z-axis at
position z′ along the z-axis are (Basset 1888; Lamb 1932; Conway 1995)

Aφ(r, z) =
Γr′

2

∫ ∞
0

J1(sr
′)J1(sr)e

−s|z−z′ |ds, (2.2)

Vr(r, z) =
±Γr′

2

∫ ∞
0

sJ1(sr
′)J1(sr)e

−s|z−z′ |ds, (2.3)

Vz(r, z) =
Γr′

2

∫ ∞
0

sJ1(sr
′)J0(sr)e

−s|z−z′ |ds. (2.4)

In (2.3) above, the positive sign is to be taken for (z − z′) > 0 and the minus sign
otherwise. These results can be generalized by introducing a ring vortex density
function γ(r, z), which gives the fields induced by a general axisymmetric ring vortex
distribution in the slipstream of an actuator disk placed at z = 0 and with slipstream
boundary R(z) as

Aφ(r, z) =
1

2

∫ ∞
0

∫ R(z′)

0

∫ ∞
0

γ(r′, z′)r′J1(sr
′)J1(sr)e

−s|z−z′ |ds dr′dz′, (2.5)

Vr(r, z) =
1

2

∫ ∞
0

∫ R(z′)

0

∫ ∞
0

±γ(r′, z′)r′sJ1(sr
′)J1(sr)e

−s|z−z′ |ds dr′dz′, (2.6)
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Vz(r, z) =
1

2

∫ ∞
0

∫ R(z′)

0

∫ ∞
0

γ(r′, z′)r′sJ1(sr
′)J0(sr)e

−s|z−z′ |ds dr′dz′. (2.7)

Wu (1962) gives the Green’s function for the axisymmetric linear operator ` ≡ −r∇2

(operating on the azimuthal component of a vector) as

G(r, r′, z, z′) =
1

2

∫ ∞
0

J1(sr
′)J1(sr)e

−s|z−z′ |ds, (2.8)

where G(r, r′, z, z′) is defined such that

`G(r, r′, z, z′) = δ(r − r′)δ(z − z′). (2.9)

Hence applying the operator ` to both sides of (2.5) gives

∇2Aφ(r, z) = −γ(r, z). (2.10)

Comparison of equations (2.1) and (2.10) gives γ(r, z) ≡ ωφ(r, z) and the density
of the ring vortices is simply the azimuthal component of the vorticity. Therefore
a practical scheme for evaluating the vector potential and velocity fields induced
by the ring vortex distribution of a propeller slipstream consists of essentially two
coupled elements: a means of solving for the vorticity in the propeller slipstream
from conditions specified at the actuator disk and a practical means of evaluating the
integrals in equations (2.5), (2.6) and (2.7).

2.1. Determination of the vorticity

Within a propeller slipstream the steady inviscid incompressible momentum equations
can be written in the form

V × ω = ∇h, (2.11)

where V is the fluid velocity, ω the vorticity (including the swirl components) and
h the specific enthalpy. It follows immediately from (2.11) that V · ∇h = 0 and the
axisymmetric stream surfaces are surfaces of constant h, hence h = h(Ψ ) where Ψ is
the axisymmetric stream function. Therefore (2.11) is equivalent to (Batchelor 1967)

V × ω =
dh

dΨ
∇Ψ. (2.12)

The axial and radial velocity components are given in terms of the stream function
by the relations

U∞ + Vz(r, z) =
1

r

∂Ψ (r, z)

∂r
(2.13)

and

Vr(r, z) = −1

r

∂Ψ (r, z)

∂z
, (2.14)

where Vz and Vr are the axial and radial perturbation velocities and U∞ is the
undisturbed free-stream velocity. Substituting (2.13) and (2.14) into (2.12) gives the
two independent relations below

Vr(r, z)

(
ωφ(r, z) + r

dh

dΨ

)
= Vφ(r, z)ωr(r, z), (2.15)

(U∞ + Vz(r, z))

(
ωφ(r, z) + r

dh

dΨ

)
= Vφ(r, z)ωz(r, z). (2.16)
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These relations can be greatly simplified for the case of an idealized contra-rotating
propeller, which is assumed to have no axial gap between the front and rear blade rows
and with both sets of blades rotating at the same frequency but in opposite directions.
Such a system can impart no mean angular momentum to any flow annulus, therefore
Vφ is zero everywhere in the slipstream with (2.15) and (2.16) reducing immediately
to the relation

ωφ(r, z)

r
= − dh

dΨ
. (2.17)

From Stokes’s theorem it follows that ωz is also zero everywhere and therefore ωr is
zero from vorticity conservation.

For single rotating propellers (2.15) and (2.16) give the relation

ωr(r, z)(U∞ + Vz(r, z)) = Vr(r, z)ωz(r, z), (2.18)

which states that the longitudinal vorticity distribution is aligned with the velocity
field consisting of the axial and radial components only. Hence the total longitudinal
vorticity enclosed by a stream tube is constant and from Stokes’s theorem is related
to the total blade circulation Γ by

Vφ(r, z) = −Γ (Ψ )

2πr
, (2.19)

where Ψ (r, 0) can be determined in the plane of the actuator disk. From vorticity
conservation we also have the relation

ωz(r, z)

U∞ + Vz(r, z)
= g(Ψ ). (2.20)

Hence substituting (2.18), (2.19) and (2.20) into (2.15) or (2.16) gives the following
relations for the vorticity components in the slipstream of a propeller:

ωφ(r, z) = −r dh

dΨ
− Γ (Ψ )g(Ψ )

2πr
, (2.21)

ωz(r, z) = (U∞ + Vz(r, z))g(Ψ ), (2.22)

ωr(r, z) = Vr(r, z)g(Ψ ). (2.23)

In these equations Γ (Ψ ) is the value of the circulation of the lifting lines of the pro-
peller at Ψ (r, 0) and from vorticity conservation the function g(Ψ ) can be determined
at the actuator disk through the relation

dΓ (r, 0)

dr
= −2πrωz(r, 0), (2.24)

so substituting (2.22) into (2.24) gives

g(Ψ ) =
−dΓ (r, 0)/dr

2πr(U∞ + Vz(r, 0))
. (2.25)

From the chain rule we can write

dΓ (r, 0)

dr
=

dΓ

dΨ

∂Ψ (r, 0)

∂r
, (2.26)

hence (2.25) can be simplified to give

g(Ψ ) = − 1

2π

dΓ

dΨ
, (2.27)
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or alternatively using (2.19) this can be written as

g(Ψ ) =
d

dΨ
(rVφ(r, z)). (2.28)

All of the elements of (2.21), and hence the vorticity everywhere in the slipstream,
can be evaluated from conditions specified in the plane of the actuator disk.

From mass conservation the axial velocity must be continuous across the disk but
the other two velocity components are in general discontinuous. If h0 is the specific
enthalpy of the uniform free stream then the specific enthalpy within the slipstream
is given by

h = h0 +
∆P (r)

ρ
+
V 2
φ(r, 0+)

2
+
V 2
r (r, 0+)− V 2

r (r, 0−)

2
(2.29)

where ∆P (r) is the pressure jump across the actuator disk and ρ the fluid density. The
final term in (2.29) can be written as γφ(r)Vrm(r) where γφ(r) ≡ (Vr(r, 0+)− Vr(r, 0−))
is the azimuthal surface density of vorticity and Vrm(r) ≡ (Vr(r, 0+) + Vr(r, 0−))/2
is the mean radial flow component at the disk. The bound surface vorticity of the
actuator disk model is the time average of the vorticity contained within the lifting
lines of a finite-bladed propeller and therefore γφ(r) is zero for propellers with blades
which can be represented by straight lifting lines. Many modern propeller blades
are indeed either swept back or are S-shaped, and if such blades are represented by
lifting lines, these lines will be curved and the blade vorticity will have an azimuthal
component. It is to be noted that for contra-rotating propellers with highly swept
blades, the contributions to γφ(r) from both sets of blades are additive. Applying the
Kutta–Joukowski law to the propeller lifting lines and equating the load on the lifting
lines with the force produced by ∆P (r) gives

∆P (r)

ρ
= −Γ (Ψ )

2π

(
Ω − Vφ(r, 0+)/2r

)
− γφ(r)Vrm(r), (2.30)

where Ω is the angular velocity of rotation of the propeller blades and Vφ(r, 0+)/2 is
the induced azimuthal velocity at the propeller lifting lines with the self-influence of
the lifting lines excluded. Substituting (2.19) and (2.30) into (2.29) gives (Wu 1962)

h(Ψ ) = h0 + ΩrVφ(r, z) (2.31)

and hence within the slipstream

r
dh

dΨ
= Ωr

d

dΨ
(rVφ(r, z)). (2.32)

From (2.21), (2.28) and (2.32) it follows that the azimuthal component of the vorticity
within the slipstream is given by

ωφ(r, z) =
(
Vφ(r, z)− Ωr

) d

dΨ
(rVφ(r, z)). (2.33)

If the bound azimuthal vorticity on the disk surface is included with the volume
distribution in the slipstream then the azimuthal vorticity everywhere is given by

ωφ(r, z) =
(
Vφ(r, z)− Ωr

) d

dΨ
(rVφ(r, z)) + γφ(r)δ(z). (2.34)

Substituting (2.34) into (2.1) gives a nonlinear differential equation for Ψ :

∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
+
∂2Ψ

∂z2
=
(
Ωr2 − rVφ(r, z)

) d

dΨ
(rVφ(r, z))− rγφ(r)δ(z). (2.35)
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Equation (2.35) is derived from a rather different point of view in the book by Breslin
& Andersen (1994). For propellers with straight lifting lines (2.35) reduces to the
equation given by Wu (1962) for the propeller actuator disk:

∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
+
∂2Ψ

∂z2
=
(
Ωr2 − rVφ(r, z)

) d

dΨ
(rVφ(r, z)). (2.36)

Bragg & Hawthorne (1950) gave a well-known equation for rotary internal flows
which in the notation employed here is

dh

dΨ
=
Vφ(r, z)

r

d

dΨ
(rVφ(r, z)) +

1

r2

(
∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
+
∂2Ψ

∂z2

)
. (2.37)

This reduces immediately to (2.36) when combined with (2.31). Bragg & Hawthorne
used (2.37) to derive some exact solutions for actuator-disk-driven flow through an
annular passage. These solutions are discussed in detail in the book edited by Thwaites
(1960) and also in the book by Horlock (1978). However, the internal flow boundary
conditions governing these solutions are not applicable to the unrestricted external
flow considered here, so these exact solutions are not directly comparable with those
presented here, except for special cases in the radial equilibrium limit at downstream
infinity where the boundary conditions are essentially equivalent.

When (2.34) is substituted into (2.5), (2.6) and (2.7), we obtain a partial analytical
solution of (2.36). In the following sections, only the case of straight lifting lines where
γφ(r) is zero is treated. The case of swept-back blades can be treated by introducing
a finite-strength distribution of bound ring vortices in the plane of the propeller,
corresponding to the last term in (2.35). If arbitrary blade shape is allowed, this
distribution is also essentially arbitrary. The fields induced by any such ‘vortex disk’
can be calculated analytically for any realistic variation of γφ(r) using the integral of
Sonine (1880) and the methods applied by Conway (1995) to the linearized actuator
disk.

3. Solution when the vorticity is known
An extremely important special case occurs where the vorticity is known a priori

everywhere within the slipstream. In equation (2.17) for a contra-rotating propeller it
is possible to choose

dh

dΨ
= −a (3.1)

at the propeller disk, where a is a constant. Then equation (2.17) reduces to

ωφ = ar (3.2)

and the vorticity is known everywhere within the slipstream. The existence of a case
where the vorticity is known a priori is very important, as the possible existence
of vorticity concentration mechanisms suppressed by numerical smearing can be
absolutely excluded for this case. The vortex sheet roll-up at the disk rim which leads
to the breakdown of the classical uniformly loaded model is just such a mechanism,
and (3.2) shows that this phenomenon is not intrinsic to the generalized actuator
disk. Equation (3.2) is a special solution of the well-known equation governing the
convection of vorticity in an inviscid fluid without swirl (Batchelor 1967)

D

Dt

(ωφ
r

)
= 0. (3.3)
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This distribution of vorticity occurs in the analytically tractable spherical vortex of
Hill (1894) and the related family of steady vortex rings explored by Fraenkel (1970,
1972) and Norbury (1973). Equation (3.2) can be immediately solved for the velocity
profile in the ultimate wake and gives the parabolic profile

Vz(r,∞) =
a

2
(R2

d − r2). (3.4)

The analytical solutions for the velocity fields and stream function for this case in the
lightly loaded limit are given by Conway (1995).

The second exact Bragg & Hawthorne (1950) actuator disk solution assumes that
ωφ is a function of r only. For the sub-case of this solution described by (3.2), Horlock
(1978) derives a parabolic profile at downstream infinity analogous to (3.4).

Combining (3.2) with (2.5), (2.6) and (2.7) gives after changing the order of inte-
gration

Ψ (r, z) =
U∞r

2

2
+
ar

2

∫ ∞
0

∫ ∞
0

∫ R(z′)

0

r′2J1(sr
′)J1(sr)e

−s|z−z′ |dr′ds dz′. (3.5)

The radial integration can be performed immediately to give

Ψ (r, z) =
U∞r

2

2
+
ar

2

∫ ∞
0

∫ ∞
0

R2(z′)
J2(sR(z′))J1(sr)

s
e−s|z−z

′ |ds dz′. (3.6)

The integration with respect to s is of the form

I(λ,µ,ν)(R(z′), r, z − z′) =

∫ ∞
0

sλJµ(sR(z′))Jν(sr)e
−s|z−z′ |ds. (3.7)

For λ, µ and ν integers, integrals of this form can always be evaluated in terms
of complete elliptic integrals using recursion relations derived from standard Bessel
function identities (Conway 1995). Hence we have

Ψ (r, z) =
U∞r

2

2
+
ar

2

∫ ∞
0

R2(z′)I(−1,2,1)

(
R(z′), r, z − z′

)
dz′, (3.8)

and similarly the other fields are given by

Vz(r, z) =
a

2

∫ ∞
0

R2(z′)I(0,2,0)

(
R(z′), r, z − z′

)
dz′ (3.9)

and

Vr(r, z) =
a

2

∫ ∞
0

±R2(z′)I(0,2,1)

(
R(z′), r, z − z′

)
dz′. (3.10)

The positive sign in equation (3.10) is to be taken for z > z′ and the negative sign
otherwise.

The functions I(−1,2,1), I(0,2,0) and I(0,2,1) are all finite within the slipstream and the
integrals (3.8) to (3.10) can be truncated analytically for z′ sufficiently large such that
R(z′) = Rd. Hence if the slipstream boundary can be determined, (3.8) to (3.10) can
be integrated numerically to give the complete set of fields induced by the actuator
disk.
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On the slipstream boundary the stream function is constant and equal to the value
at the disk rim. Therefore (3.8) gives

Ψ (Ra, 0) =
U∞R

2(z)

2
+
aR(z)

2

∫ ∞
0

R2(z′)I(−1,2,1)

(
R(z′), R(z), z − z′

)
dz′. (3.11)

This equation is a nonlinear, non-singular integral equation for R(z) which can be
solved iteratively by successive substitution, as described in the Appendix.

3.1. Results

With the introduction of a non-dimensional parameter â ≡ aR2
a/U∞, then (3.4)

becomes
Vz(r,∞)

U∞
=

â

2R2
a

[
R2
d − r2

]
. (3.12)

The propeller wake infinitely far downstream in the annulus between r and r + dr
increases in length by U∞ + Vz(r,∞) each second, and the thrust T and the power
P for a general propeller without slipstream swirl can be obtained by equating them
to the total generation of excess momentum and kinetic energy respectively in the
growing slipstream. This gives

T = 2πρ

∫ Rd

0

(U∞Vz(r,∞) + V 2
z (r,∞))r dr (3.13)

and

P = πρ

∫ Rd

0

(2U2
∞Vz(r,∞) + 3U∞V

2
z (r,∞) + V 3

z (r,∞))r dr. (3.14)

Introducing a thrust coefficient CTh based on disk area and a corresponding power
coefficient CP then the propeller efficiency η is given by (Von Mises 1945)

η ≡ CTh

CP
, where CTh ≡

2T

πρU2
∞R

2
a

and CP ≡
2P

πρU3
∞R

2
a

.

With these definitions, substituting (3.12) into (3.13) and (3.14) gives

CTh =
â

2

(
Rd

Ra

)4
[

1 +
â

3

(
Rd

Ra

)2
]

(3.15)

and

CP =
â

2

(
Rd

Ra

)4
[

1 +
â

2

(
Rd

Ra

)2

+
â2

16

(
Rd

Ra

)4
]
, (3.16)

hence

η =
1 + â(Rd/Ra)

2/3

1 + â(Rd/Ra)2/2 + â2(Rd/Ra)4/16
. (3.17)

Defining v̄ as the mean downstream perturbation velocity in the slipstream (normal-
ized by U∞) then (3.17) can be written concisely as

η =
1 + 4v̄/3

(1 + v̄)2
. (3.18)

The corresponding formula for the ideal efficiency ηi of the uniformly loaded disk can
be derived in the same fashion by considering the momentum and energy generation
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Figure 1. Convergence of the slipstream boundary for â = 4 (CTh = 2.445).

in the downstream limit, which gives

ηi =
2

2 + v̄
. (3.19)

Although this result is familiar from elementary theory, its derivation from (3.13) and
(3.14) establishes (3.19) as an exact relation independent of Froude’s propeller law
and despite the shortcomings of the elementary theory discussed in § 1.

In order to determine the thrust, power and efficiency from (3.20) to (3.22) for
given â or for specified CTh, equation (3.11) must be solved to obtain the slipstream
contraction (Rd/Ra) for the given value of â. The convergence of the iteration to
solve (3.11) is extremely rapid for moderate values of â but degrades with increasing
â and for large values of â much above 5, under-relaxation is needed to stabilize the
iteration. Figure 1 shows the convergence of the slipstream boundary without under-
relaxation for â = 4, which corresponds to a realistic thrust coefficient CTh = 2.445
and a slipstream contraction (Rd/Ra) = 0.8804. For this value of â a solution can
be obtained with much fewer iterations using under-relaxation. The slipstream has
essentially reached its final converged limit within two propeller diameters downstream
of the disk. The converged slipstream contraction shown in figure 1 is qualitatively
similar to those obtained with the nonlinear actuator disk model of Greenberg &
Powers (1970).

Figure 2 shows the converged slipstream boundaries for a = −1, 2, 5, 10 and 20,
which correspond to thrust coefficients CTh = −0.4484, 1.131, 3.147, 6.940 and 15.02,
and slipstream contractions (Rd/Ra) = 1.111, 0.9218, 0.8651 and 0.7499 respectively.
For values of â of 5 and above, under-relaxation was used to obtain the solutions. The
distance downstream where some specified fraction of the final slipstream contraction
is achieved decreases markedly as CTh is increased.

Figures 3(a) and 3(b) show the final slipstream contraction and the efficiency η
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CTh = −0.4484, 1.131, 3.147, 6.940 and 15.02 repectively.

respectively as functions of CTh for this actuator disk compared with the elementary
textbook formulae (Von Mises 1945)

Rd

Ra
=

[
1 + (1 + CTh)

1/2

2(1 + CTh)1/2

]1/2

(3.20)

and

ηi =
2

1 + (1 + CTh)1/2
. (3.21)

These elementary formulae are based on Froude’s (1889) propeller law, which states
that a uniform perturbation velocity is induced at the disk which is exactly half
the final perturbation velocity induced in the slipstream at downstream infinity. The
efficiency η is of course somewhat less than the ideal efficiency, and the contraction
of the slipstream reaches a greater final value for larger values of CTh. The slipstream
contraction is rather better predicted by (3.20) for moderate values of CTh than the
efficiency.

Figure 4 compares the induced axial velocity Vz(r, z) for â = 5 (CTh = 3.147) at
various values of the axial coordinate z. The distributions are qualitatively similar
to the corresponding results for the linearized disk (Conway 1995), apart from the
explicit slipstream contraction and the fact that the induced axial velocity close to the
edge of the disk is negative, though the total axial component at the disk is always
positive.
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The non-dimensional axial velocity ratio Vz(0, z)/Vz(0,∞) in the lightly loaded limit
(Conway 1995) is

Vz(0, z)

Vz(0,∞)
=

1

2
+

z

Ra

(1 +

(
z

Ra

)2
)1/2

− | z |
Ra

 . (3.22)

Figure 5 compares (3.22) with the nonlinear results for various values of CTh. There
is some deviation from (3.22) both in front of the disk and behind it, though perhaps
less than might be expected for very large values of CTh. Figure 6 shows the variation
of Vz(0, 0)/Vz(0,∞) with CTh and illustrates the extent to which Froude’s propeller
law holds in the nonlinear case. Clearly this law, though rigorously true for the
linearized disk, is rather approximate for realistic values of CTh, for which the axial
velocity at the disk reaches perhaps 55% of its downstream value. The increase of
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Figure 4. Induced axial velocity Vz(r, z) as a function of the radial coordinate r at various values
of the axial coordinate z for â = 5 (CTh = 3.147).

Vz(0, 0)/Vz(0,∞) with CTh is consistent with more rapid slipstream contraction as CTh
is increased.

Figure 7 shows the radial velocity in the actuator disk plane and at several axial
locations fore and aft of this plane for â = 5 (CTh = 3.147). For the linearized disk
there is fore-and-aft symmetry of Vr about the actuator disk plane (Conway 1995), and
this symmetry is broken for the nonlinear disk. As was found by Conway (1995) for
the linearized disk, the radial velocity in the actuator disk plane is of the same order as
the induced axial component, and in this case both are comparable in magnitude with
the free stream. Another difference between the linearized and nonlinear cases is the
discontinuity in the slope of Vr at the slipstream boundary. For the linearized actuator
disk (Conway 1995) there is such a discontinuity in the slope of the axial perturbation
velocity Vz at the cylindrical boundary between vortical and potential flow, but not
for the radial component Vr . The difference results because the boundary between the
vortical and non-vortical flow regions (the slipstream boundary) is no longer parallel
to the z-axis for the nonlinear case. From (2.14) it follows that Vr is determined by
the gradient of Ψ parallel to the z-axis. On traversing a path parallel to the z-axis
which cuts the slipstream boundary, a finite discontinuity in ωφ is encountered at the
boundary. This necessarily results in a corresponding finite discontinuity in ∂Vr/∂r.

The radial load distribution can be obtained from (2.29) and integration of (3.1)
using the boundary condition of zero load at the disk rim. If a non-dimensional load
distribution L(r) is defined by

L(r) =
2∆P (r)

ρU2
∞

(3.23)

then

L(r) =
2â(Ψe −Ψ (r, 0))

U∞R2
a

(3.24)
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where Ψe is the value of the stream function at the edge of the disk, and a normalized
distribution is given by

L(r)

L(0)
= 1− Ψ (r, 0)

Ψe

. (3.25)

Normalized load distributions for various values of CTh are shown in figure 8. For
large values of CTh there is some distortion from the purely parabolic load distribution
of the linearized case.
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4. Generalized propellers without slipstream rotation
For a contra-rotating propeller or a single-rotating propeller in the approximation

where swirl is neglected, (2.29) can be written as

h(Ψ ) = h0 +
∆P

ρ
. (4.1)

Provided the load distribution has finite slope everywhere, we can represent h(Ψ )
everywhere within the slipstream to any required accuracy by a polynomial in Ψ/Ψe:

h(Ψ ) = h0 +

M∑
m=0

am

(
Ψ

Ψe

)m
. (4.2)

At the slipstream edge h(Ψ ) = h0 so
∑M

m=0 am = 0, and if the load distribution also

falls to zero at the blade roots we also have a0 = 0 and therefore
∑M

m=1 am = 0. From
(2.17) and (4.2) we have

ωφ

r
= −

M∑
m=1

mam

Ψe

(
Ψ

Ψe

)m−1

, (4.3)

and in the downstream limit, ωφ = −dVz(r,∞)/dr so from (2.13) and (4.3) we obtain
the ordinary differential equation for the ultimate wake

1

r

d

dr

(
1

r

dΨ

dr

)
=

M∑
m=1

mam

Ψe

(
Ψ

Ψe

)m−1

. (4.4)

Once the final contracted slipstream radius Rd or the mass flow through the disk have
been determined, this equation can always be integrated by a suitable Runge–Kutta
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shooting method with two-point boundary conditions to obtain accurate values for
CTh, CP and η. The conditions Ψ = 0 for r = 0 and dΨ/dr = 0 for Ψ = Ψe can
always be used. Equation (4.4) can be solved analytically for some special cases.

An alternative representation to (4.3) which can accurately approximate an arbitrary
vorticity component ωφ(r, z) within the slipstream for N sufficiently large is

ωφ(r, z)

r
=

N∑
n=0

An(z)

[
1−

(
r

R(z)

)2
]n
. (4.5)

The An(z) can be expected to be only weak functions of z as ωφ/r is constant along
streamlines. Since the axis of symmetry and the slipstream boundary r = R(z) are

both streamlines, it follows that A0 = const and
∑N

n=1 An(z) = const. In the limit of
light loading then R(z) = Ra and Ψ/Ψe = (r/Ra)

2, so the relation between (4.3) and
(4.5) is simple and direct, with all of the An constant.

If (4.5) is substituted into (2.5), (2.6) and (2.7), the radial integrations can be
performed immediately using the following integral (Gradshteyn & Ryzhik 1980),
which is due to Sonine (1880):∫ 1

0

xν+1(1− x2)µJν(bx)dx = 2µΓ (µ+ 1)b−(µ+1)Jν+µ+1(b). (4.6)

The integrations with respect to s are of the form described by (3.7) and can also be
performed to give the one-dimensional axial integrals

Ψ (r, z) =
U∞r

2

2
+ r

∫ ∞
0

N∑
n=0

An(z
′)2n−1n!R2−n(z′)I(−(n+1),n+2,1)(R(z′), r, z − z′)dz′, (4.7)



Exact actuator disk solutions for non-uniform heavy loading 251

Vr(r, z) =

∫ ∞
0

±
N∑
n=0

An(z
′)2n−1n!R2−n(z′)I(−n,n+2,1)(R(z′), r, z − z′)dz′, (4.8)

Vz(r, z) =

∫ ∞
0

N∑
n=0

An(z
′)2n−1n!R2−n(z′)I(−n,n+2,0)(R(z′), r, z − z′)dz′. (4.9)

The above integrals provide complete solutions for the stream function and velocity
components of a generalized contra-rotating propeller once the slipstream boundary
R(z) and the functions An(z) have been determined iteratively. The functions An(z)
can be determined within the same iteration loop as the slipstream boundary by
generalizing (3.11) to give

Ψ (Ra, 0) =
U∞R

2(z)

2

+R(z)

∫ ∞
0

N∑
n=0

An(z
′)2n−1n!R2−n(z′)I(−(n+1),n+2,1)(R(z′), r, z − z′)dz′. (4.10)

At the ith iteration we define

Ii(z) =

∫ ∞
0

N∑
n=0

Ain(z
′)2n−1n!R2−n

i (z′)I(−(n+1),n+2,1)(Ri(z
′), Ri(z), z − z′)dz′ (4.11)

and the iteration for the slipstream boundary is

Ri+1(z) =

{(
Ii(z)

U∞

)2

+
2Ψi(Ra, 0)

U∞

}1/2

− Ii(z)

U∞
. (4.12)

For the first iteration the constant An values of the lightly loaded limit are used.
The functions An(z) are evaluated at each subsequent iteration by evaluating Ψ (r, zs)
at a set of axial stations zs within the slipstream and then least-squares fitting (4.5)
to match (4.3). The coefficients An(z) are then obtained at all other values of z by
interpolation. For the solutions to be presented here, 11 equally spaced axial stations
were specified from z/Ra = 0 to z/Ra = 5, and at each station Ψ was evaluated at 11
equally spaced points from r/R(z) = 0 to r/R(z) = 1.

In the current work, (4.2) has been used directly to specify the specific enthalpy in
the slipstream. This has the advantage that h(Ψ ) is known a priori as a function of
Ψ/Ψe and therefore (4.4) can be integrated directly to give the limiting solution at
downstream infinity and hence validate the results of the full solution. The disadvan-
tage is that the relationship in the disk plane between Ψ and the radial coordinate
r is not known until after the solution has been completed, and therefore the load
distribution at the disk is not directly specified as a function of r. This difficulty can
be overcome by specifying h(r, 0) in the disk plane and updating the coefficients am
in (4.2) to match h(r, 0) at each iteration.

4.1. Results

The simplest case of (4.3) for which the load distribution falls to zero at both root
and tip is

h(Ψ ) = h0 + a1

[
Ψ

Ψe

−
(
Ψ

Ψe

)2
]
. (4.13)
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Introducing a non-dimensional coefficient b̂ = R2
aa1/U∞Ψe gives

ωφ

r
=
U∞b̂

R2
a

[
2

(
Ψ

Ψe

)
− 1

]
(4.14)

and in the lightly loaded limit (4.5) takes the form

ωφ

r
=
U∞b̂

R2
a

{
1− 2

[
1−

(
r

Ra

)2
]}

. (4.15)

For this special case (4.4) becomes

1

r

d

dr

(
1

r

dΨ

dr

)
=
U∞b̂

R2
a

[
1− 2

(
Ψ

Ψe

)]
(4.16)

and the substitution t ≡ r2 reduces (4.16) to the simple harmonic motion equation.

For b̂ > 0 it is convenient to define a parameter β ≡ (U∞b̂/2R
2
aΨe)

1/2 and then the
solution of (4.16) subject to the conditions Ψ (0,∞) = 0 and Ψ (Rd,∞) = Ψe becomes

Ψ (r,∞) =
Ψe

2

(
1− cos βr2 +

(1 + cos βR2
d) sin βr2

sin βR2
d

)
. (4.17)

To satisfy the condition Vz(Rd,∞) = 0 we must have

βΨe

U∞
=

sin βR2
d

1 + cos βR2
d

(4.18)

and therefore
Vz(r,∞)

U∞
= cos βr2 − 1 +

sin βR2
d

1 + cos βR2
d

sin βr2. (4.19)

Hence the formulae analogous to (3.15), (3.16) and (3.17) are

CTh =
2

1 + cos βR2
d

(
Rd

Ra

)2 [
1− sin βR2

d

βR2
d

]
, (4.20)

CP =
4

3βR2
d

(
Rd

Ra

)2 [
sin βR2

d

1 + cos βR2
d

]3

, (4.21)

η =
3(βR2

d − sin βR2
d) sin βR2

d

2(1− cos βR2
d)

2
. (4.22)

Equivalent formulae can be derived in terms of hyperbolic functions for the case of a

windmill where b̂ < 0. The efficiency η depends only on the dimensionless group βR2
d

and from (4.18) this is given implicitly in terms of the mean normalized perturbation
velocity v̄ in the ultimate wake by the equation

1 + v̄ =
2 sin βR2

d

βR2
d(1 + cos βR2

d)
. (4.23)

Figure 9 compares the efficiency η(v̄) given by (4.22) and (4.23) with (3.19) and (3.18).
As might be expected, the ideal efficiency ηi specified by (3.19) is the highest for given
v̄ of the three analytical formulae shown. However, the efficiency η given by (4.22)
and (4.23), which corresponds to a case for which both the load distribution and
h − h0 vanishes both at r = 0 and r = Ra, is higher at given v̄ than for (3.18), for
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Figure 9. Efficiency η(v̄) given by various analytical expressions.

which the load distribution and h − h0 vanish only at r = Ra. Figure 10 compares
the numerically computed efficiencies for these two cases as a function of the thrust
coefficient CTh. At specified thrust coefficient, the case with the enthalpy determined
by (4.13) again gives higher efficiency than when the enthalpy is determined by (3.1),
though both efficiency curves are quite close despite the differences in the underlying
load distributions. It is shown below that despite the simplicity of (4.13), it gives
rise to a load distribution representative of a generic propeller. Hence the inviscid
efficiency of a real propeller can be expected to be represented more accurately by
(4.22) and (4.23) than by the ideal efficiency given by (3.19).

Figure 11 shows the converged slipstream boundaries for various values of b̂, and
these contractions are qualitatively similar to those given in figure 2. Figure 12 shows
the corresponding disk load distributions. Despite the simplicity of (4.13), these are
remarkably good representations of generic propeller radial distributions. Figure 13
gives the radial velocity distribution in the disk plane and at various axial stations

fore and aft of the disk for b̂ = 5, which corresponds to CTh = 0.9533 and η = 0.8099.
These distributions qualitatively resemble the corresponding distributions obtained
by Conway (1995) for a linearized disk with hub, apart from the discontinuity in
∂Vr/∂r at r = R(z), and the breaking of the fore/aft symmetry.

Figure 14 shows the induced axial velocities for b̂ = 5 at the disk and at different
axial stations fore and aft of the disk. A notable feature is that although the load
distribution vanishes at r = 0 for this case and therefore the velocity along the
axis vanishes in the linear limit, the nonlinear axial perturbation velocity Vz(r, 0)/U∞
does not vanish on the axis, and is substantially negative. This negative perturbation
velocity near the axis results because the boundary condition of zero load at the axis
has been imposed, making dh/dΨ positive near the axis and of course negative near
the disk rim. From (2.17) it can be seen that ωφ is therefore necessarily opposite in
sign in the inner part of the slipstream to its value in the much larger outer region of
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Figure 11. Converged slipstream boundaries for various values of b̂.

the slipstream. The velocity field induced by the ring vortex distribution in the inner
part of the slipstream will therefore be opposite in direction to that induced by the
distribution in the outer part. The relative strengths of these competing inductions
can in general only be calculated by nonlinear calculations such as those presented
here, though competing trends can sometimes be qualitatively understood. This is
illustrated by figure 15, which shows the normalized induced axial velocity along the
axis of symmetry for various values of the thrust coefficient CTh. Far upstream of
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the disk, the induced axial velocity is positive. This is because the ring vortices in the
outer part of the slipstream are of greater physical dimensions than those in the inner
region, so their induction effect falls off less rapidly with distance and they dominate
upstream of the disk. However near the disk and downstream of it, the inner ring
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vortices dominate due to their closer proximity to the axis and the total induced axial
velocity is negative. Application of the Bernoulli equation along the axis shows that
the axial induction must necessarily vanish in the limit of downstream infinity, as can
be seen in figure 15.

Figure 16 shows the approach of the axial velocity profile calculated by the general
method to the analytical formula (4.19) for the downstream limiting profile. At two
propeller diameters downstream of the disk, the velocity profile has almost achieved
its limiting asymptotic form. This provides very strong verification of the numerics of
the general calculation scheme.

5. Propellers with slipstream rotation
It is straightforward to generalize the results obtained so far to the case of propellers

with swirl. Substituting (2.31) into (2.33) gives

ωφ

r
=

(
h− h0

(Ωr)2
− 1

)
dh

dΨ
. (5.1)

Equation (2.17) is recovered from (5.1) in the case where Ω → ∞. This result may
appear counter-intuitive, but is a consequence of the fact that the circulation Γ along
the blades must vanish if the load distribution along the blades is held finite as Ω →∞.
It follows from vorticity conservation that the longitudinal vorticity components ωz
and ωr must also vanish and therefore from Stokes’s theorem the swirl component
Vφ must also vanish in the slipstream.

For finite Ω, the azimuthal velocity component Vφ(r, z) is given from (2.31) by

Vφ(r, z) =
h− h0

Ωr
, (5.2)
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and therefore, unlike the contra-rotating case, when slipstream rotation is present the
load distribution must fall to zero at the blade roots to avoid singular behaviour,
unless a finite hub is introduced. As before, the specific enthalpy in the slipstream can
be represented by (4.2), and ωφ is given by (4.5) everywhere in the slipstream. From
(2.29) and (3.23) the propeller load distribution is given by

L(r) =
h(Ψ (r, 0))− h0

U2
∞

(
2− h(Ψ (r, 0))− h0

(Ωr)2

)
. (5.3)

If we again choose the simplest case where the specific enthalpy is given by (4.13),
then from (5.1) the vorticity in the slipstream is given by

ωφ

r
=
U∞b̂

R2
a

[
2

(
Ψ

Ψe

)
− 1

] [
1− b̂J2

π2

(
Ψe

U∞r2

)(
Ψ

Ψe

−
(
Ψ

Ψe

)2
)]

, (5.4)

which on the axis of symmetry reduces to

ωφ

r
=
U∞b̂

R2
a

[
b̂J2

2π2

(
1 +

Vz

U∞

)
− 1

]
(5.5)

and in the lightly loaded limit reduces to

ωφ

r
=
U∞b̂

R2
a

{
1− 2

[
1−

(
r

Ra

)2
]}{

1− b̂J2

2π2

[
1−

(
r

Ra

)2
]}

, (5.6)

where J = U∞/nd is the propeller advance ratio and d ≡ 2Ra is the propeller diameter.
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(4.19) for the downstream limit.

In the downstream limit (5.4) gives the ordinary differential equation

1

r

d

dr

[
1

r

d

dr

(
Ψ

Ψe

)]
=

U∞b̂

R2
aΨe

[
1− 2

(
Ψ

Ψe

)][
1− b̂J2

π2

(
Ψe

U∞r2

)(
Ψ

Ψe

−
(
Ψ

Ψe

)2
)]

,

(5.7)
which can be numerically integrated, subject to the two-point boundary conditions
Ψ = 0 at r = 0 and dΨ/dr = 0 when Ψ = Ψe at the slipstream boundary, to give an
accurate solution at downstream infinity once a value for Ψe has been obtained from
the iterative solution of (4.10). Here a standard Runge–Kutta solver from the book
by Press et al. (1992) was used.

From (4.13) and (5.2) the azimuthal velocity in the slipstream is given by

Vφ(r, z)

U∞
=

b̂JΨe

πRaU∞r

[
Ψ

Ψe

−
(
Ψ

Ψe

)2
]
, (5.8)

which in the lightly loaded limit reduces to

Vφ(r, z)

U∞
=

b̂Jr

2πRa

[
1−

(
r

Ra

)2
]
. (5.9)

In a propeller slipstream with rotation, the pressure in the ultimate wake is not equal
to the free-stream pressure except at the slipstream boundary, and (3.13) and (3.14)
must be modified to take this into account. By calculating the flow of momentum and
energy in and out of a suitable control volume in the limit as the dimensions of the
volume become infinite, it is straightforward to show that (3.13) and (3.14) generalize
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to give

T = 2πρ

∫ Rd

0

{
p− p∞
ρ

+U∞Vz(r,∞) + V 2
z (r,∞)

}
rdr (5.10)

which can be written as

T = 2πρ

∫ Rd

0

{
h− h0 +

V 2
z (r,∞)− V 2

φ(r,∞)

2

}
rdr, (5.11)

and

P = 2πρ

∫ Rd

0

(U∞ + Vz(r,∞))(h− h0)rdr. (5.12)

Equation (5.12) can also be obtained very simply by equating the propeller torque
Q to the rate of generation of angular momentum in the slipstream and employing
(2.31) and the relation P = ΩQ. From (5.11), (5.12) and (2.31), CTh and CP are given
by

CTh =
4

R2
a

∫ Rd

0

{
πr

JRa

(
Vφ(r,∞)

U∞

)
+

1

2

[(
Vz(r,∞)

U∞

)2

−
(
Vφ(r,∞)

U∞

)2
]}

rdr (5.13)

and

CP =
4π

JR3
a

∫ Rd

0

(
1 +

Vz(r,∞)

U∞

)
Vφ(r,∞)

U∞
r2dr. (5.14)

Equations (5.13) and (5.14) can be integrated numerically to obtain accurate values for
CTh, CP and η from the solution at downstream infinity, and it is straightforward to
evaluate these integrals within the Runge–Kutta solution for the velocities. Equation
(5.12) is in a form which can be directly integrated analytically for the general case
using (4.2) which gives

CP =
4Ψe

U3
∞R

2
a

M∑
m=0

am

m+ 1
. (5.15)

5.1. Results

Figure 17 shows the convergence (without under-relaxation) of the slipstream bound-

ary for the case where b̂ = 5 and J = 1, which corresponds to a slipstream contraction

Rd/Ra = 0.9293, almost identical to that with the same value of b̂ without slipstream
rotation. For this case Ψe/U∞R

2
a = 0.5959, CTh = 0.8903, CP = 1.184 and the efficiency

η = 0.7521. No noticeable effects of advance ratio J on the convergence of the iteration
for the slipstream boundary were found. Figure 18 shows the streamline pattern for a

more heavily loaded case with b̂ = 15 and J = 1. For this case CTh = 2.510, CP = 5.971
and the efficiency η = 0.4203. The streamlines pass through the actuator disk smoothly,
crossing it only once, and no particular problems occur near the disk rim.

Figure 19 shows the disk load distribution L(r) as defined by (3.23) for b̂ =
5 and various values of the advance ratio J. These distributions are reasonably

representative of load distributions for a generic propeller. For fixed b̂ the maximum
of the distribution moves outwards toward the rim as the advance ratio increases.
There is a substantial decrease in CTh with increasing J , and this occurs at almost
constant mass flow through the disk, as Ψe increases by less than 1% from J = 0
to J = 2. Figure 20 shows the various non-dimensional coefficients as a function of
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Figure 18. Streamlines for a more heavily loaded case with b̂ = 15 and J = 1.

J for this value of b̂. The propeller efficiency falls with J for fixed b̂, almost entirely
to the reduction in the thrust coefficient, as the power coefficient CP increases only
slightly with increasing J .

Figure 21 shows the radial variation of the axial perturbation velocity at various
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Figure 19. Disk load distribution for b̂ = 5 and various values of the advance ratio J .
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Figure 20. Non-dimensional coefficients as functions of the advance ratio J .

axial stations fore and aft of the disk for b̂ = 5 and J = 1. In contrast to the results
for J = 0, the axial perturbation velocity Vz(0, z) does not vanish in the downstream
limit, even though the disk load distribution falls to zero at the axis for this case.
That this should be so can be seen from elementary considerations. The pressure at
the slipstream boundary in the downstream limit must equal the free-stream pressure,
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Figure 21. Vz(r, z) at axial stations fore and aft of the disk for b̂ = 5 and J = 1.
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Figure 22. Vz(0, z) along the axis of symmetry for b̂ = 5 and various values of the advance ratio J .

and must fall monotonically within the slipstream to provide the pressure gradient
which maintains the fluid particles in spiral paths of constant radius. Therefore the
pressure along the axis of symmetry in the downstream limit is below free-stream and
decreases with increasing advance number J . The Bernoulli equation can again be
applied along the entire axis of symmetry and as Vz is the only perturbation velocity
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Figure 23. Approach of the axial velocity profile to the asymptotic limiting profile.
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Figure 24. Radial velocity distributions in the disk plane and at axial stations fore and aft

of the disk for b̂ = 5 and J = 1.

component which is not necessarily zero, it follows that Vz(0, z) does not tend to zero

in the downstream limit. Figure 22 shows Vz(0, z) along the axis of symmetry for b̂ = 5
and various values of the advance ratio J . For moderate values of J , Vz(0, z) has
a local minimum a short distance downstream of the disk. The principal difference
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Figure 26. Azimuthal velocity Vφ for b̂ = 5 and J = 1 at various axial stations downstream of the
disk.

between figure 21 and figure 16 is that Vz(0, 0) is positive rather than negative. This is
qualitatively understandable from inspection of figure 22, where it can be seen that the
suction produced by the low pressure along the axis at downstream infinity alters the
balance between the competing inductions progressively in favour of positive induced
Vz(0, z) as the advance ratio and hence the swirl in the slipstream is increased.
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The approach of Vz(r, z) as z increases to the asymptotic profile Vz(r,∞) calculated

by the Runge–Kutta shooting method is shown in figure 23 for b̂ = 5 and J = 1. By
two propeller diameters downstream of the disk, the difference between the velocity
profile and its asymptotic limit is very small.

Figure 24 gives the radial velocity Vr(r, zs) in the disk plane and at various axial

stations zs fore and aft of the disk for b̂ = 5 and J = 1. The radial profiles are
qualitatively similar to those given in figure 13 for J = 0. The effect of advance

ratio on Vr is shown in figure 25, which gives Vr(r, 0) for b̂ = 5 and various values
of the advance ratio J. The effect of J on the radial velocity profile at the disk
is considerable, falls towards the slipstream boundary, and is negligible outside the
slipstream where the azimuthal velocity Vφ is zero.

Finally, figure 26 shows the azimuthal velocity Vφ(r, zs) at various axial stations zs
downstream of the disk and the asymptotic profile at zs = ∞, for b = 5, CTh = 0.8903
and J = 1. The variation of the Vφ profile with axial position within the slipstream
is of course much less than for the other induced velocities. Vφ(r, z) is comparable in
magnitude with the free-stream velocity throughout most of the slipstream for these
values of CTh and J, which are not unreasonable for a marine propeller.

6. Comments and conclusions
An exact method of solving for the flow induced by a heavily loaded propeller

actuator disk with slipstream rotation and non-uniform loading has been developed.
The method extends the linearized solution given by Conway (1995) to the heavily
loaded case with slipstream contraction subject to the restriction that the radial gradi-
ent of the load, and hence the azimuthal component of the vorticity in the slipstream,
is bounded. The slipstream boundary is obtained by iterative solution of a nonlinear
non-singular integral equation, and the flow field is given by numerical evaluation
of one-dimensional integrals containing elliptic integral expressions similar to those
which occur in the linearized solution. The propeller efficiency, thrust, torque and flow
field can be calculated for any realistic load distribution with bounded radial gradient.

Results have been presented for both contra-rotating and normal propellers with
realistic generic load distributions and also for a special contra-rotating case for
which the vorticity distribution is known a priori in the slipstream and is equal to
that within the well-known spherical vortex of Hill (1894). Indeed it can be shown
that the spherical vortex itself is a special analytical solution of equation (3.11). It
seems therefore at least a possibility that a fully analytical solution could be obtained
for the slipstream boundary for this special case.

Analytical expressions for thrust, torque, efficiency and the velocities in the ultimate
wake have been derived for some special cases. The full three-dimensional calculations
have been validated by comparison with Runge–Kutta and analytical solutions in the
ultimate wake for which the solution becomes one-dimensional.

It has been found that the fore–aft symmetry of the induced radial velocity is broken
in the nonlinear case, and there is a discontinuity in the slope of the radial velocity
across the slipstream boundary which is not present in the linearized case. As was
found by Conway (1995) for the linearized disk, the radial velocity in the disk plane
for the heavily loaded disk is comparable in magnitude to the induced axial velocity.

For the heavily loaded disk substantial deviations were found from Froude’s (1889)
law for the axial velocity, which is the basis of the well-known Glauert (1926, 1935)
approach for the actuator disk.
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The method presented here can be combined with blade element theory to provide
calculations of propeller efficiency as a function of advance ratio for given propeller
geometry. The method could also be embedded in a suitable panel method to calculate
the effect of the propeller on its vehicle.

It remains to be seen if it is theoretically or practically possible to extend the
method to encompass load distributions with a square-root or other singularity in
the radial gradient at the blade tips. The method presented here can definitely not
be applied to the classical special case of uniform loading, for which the slipstream
boundary is a free vortex sheet. The case of bollard conditions for which CTh = ∞ also
gives difficulties as the convergence of the iteration used to solve (3.11) degrades with
increasing CTh, and for sufficiently high CTh the axial velocity induced near the disk
rim will be large enough to cause an outflow near the rim, violating the basic assump-
tions of actuator disk theory. However, no difficulties were experienced in obtaining
solutions throughout the ranges of CTh and J applicable to practical propellers.

The author would like to thank Dr. Christopher Grigson for reading the manuscript
and for many helpful and encouraging discussions during the course of this work.
The author would also like to thank the referees for their helpful comments.

Appendix. Solution of the integral equation
Equation (3.11) is

Ψ (Ra, 0) =
U∞R

2(z)

2
+
aR(z)

2

∫ ∞
0

R2(z′)I(−1,2,1)

(
R(z′), R(z), z − z′

)
dz′. (A 1)

This equation for the slipstream boundary R(z) can be solved iteratively. If we define

I(z, R(z)) =

∫ ∞
0

R2(z′)I(−1,2,1)

(
R(z′), R(z), z − z′

)
dz′ (A 2)

then

R(z) =

{(
aI(z, R(z))

2U∞

)2

+
2Ψ (Ra, 0)

U∞

}1/2

− aI(z, R(z))

2U∞
, (A 3)

and a suitable iteration scheme is

Ri+1(z) =

{(
aI(z, Ri(z))

2U∞

)2

+
2Ψi(Ra, 0)

U∞

}1/2

− aI(z, Ri(z))

2U∞
. (A 4)

The first iteration can be performed analytically. Taking R1(z) = Ra where Ra is the
radius of the actuator disk and defining k ≡ 2Ra/(z

2 + 4R2
a)

1/2 gives

I(z, R1(z)) =
R3
a

8
− z2Ra

4
+

z

6πk

(
z2(K(k)− E(k)) + 4R2

aE(k)
)
. (A 5)

A second iteration can be obtained by substituting (A 5) into (A 4) and performing
the integration in (A 2) numerically. To perform further iterations it is convenient to
represent R(z) in terms of a set of basis functions. The basis adopted here is the same
as that used by Greenberg & Powers (1970), which represents R(z) by a series of the
form

R(z) = Ra +

N∑
n=1

an(1− e−nz). (A 6)



Exact actuator disk solutions for non-uniform heavy loading 267

After each iteration a new representation of R(z) is obtained by a least-squares fit
at the discrete points at which R(z) was evaluated in the previous iteration. For the
results presented here 501 equally spaced points from z/Ra = 0 to z/Ra = 5 were
used, though no discernible difference in the results is found if the number of points
is reduced to 51.
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